
1 | ANU College of Engineering and Computer Science	 September 2020

Distributing Server
Week 7 Laboratory for Concurrent and Distributed Systems

Uwe R. Zimmer based on material by Alistair Rendell

Pre-Laboratory Checklist

vv You have read this text before you come to your lab session.
vv You understand and can utilize message passing.
vv You have a firm understanding of memory based synchronization.
vv You successfully completed all your previous labs in full.

Objectives
This is an optional lab for advanced students. No concepts in here are required to pass the
course, and if you struggle with basic concepts from previous labs, then it is wise to focus on
their full resolution first.

The objective of this lab is to gain confidence and experience in more complex server setups,
especially load balancing servers.

Interlude:  Load balancing server

A classical pattern for a load balancing server is to re-distribute incoming calls based on the
current situation of the computation nodes, while fully releasing any connection with the origi-
nating caller. The original caller may or may not be aware of the re-direction.

We will illustrate this principle based on the example of calculating the Mandelbrot Set by
employing the currently-free, computational resources. The example is interesting in the sense
that the time which a specific node will take to determine divergence is almost impossible to
predict.

The techniques which will be used during this example are select statements on the calling as
well as on the receiving side, conditional entries and requeue statements. This is a powerful set
of tools which will require some time for you to fully analyse.

Relations between the individual parts of the system are apparently circular, yet Ada (despite
being an Algol-style language which insists on declarations and elaborations before any usage)
will be able to express this, due to the separation of specifications and implementations.

2 | ANU College of Engineering and Computer Science	 September 2020

Have a look at the following pattern for a server which accepts requests to calculate one col-
umn inside a Mandelbrot Set:

 task body Server is

 begin
 loop
 select
 accept Compute (Job : Jobs; Diverge_Column : out Natural_Array) do
 for Node of Compute_Nodes loop
 select
 Node.Responsive;
 requeue Node.Compute;
 else
 null;
 end select;
 end loop;
 requeue Busy_Nodes.Hold;
 end Compute;
 or
 terminate;
 end select;
 end loop;
 exception
 when E : others => Put_Line (Exception_Information (E));
 end Server;

The server has knowledge about all active compute nodes and probes each node to see
whether it is currently responsive (by attempting to call it). If it finds a node to respond to such
a call, it assumes that the node is currently available for business and redirects the original call
to this node. This is done by a requeue statement, i.e. that the call is completely disassociated
with the server and taken over by the chosen compute node.

If no responsive compute node can be found then this client call is re-directed to the blocking
entry Hold. If the load situation changes then this entry may open and the call is directed back
to the server for another attempt to find a compute node.

You may have noticed that this is a strategy to produce maximal throughput – not to guarantee
fairness. Think how you could change the process in order to provide a first-in-first-out order
of processing. Would this result in the same performance level?

3 | ANU College of Engineering and Computer Science	 September 2020

Next, check how the compute nodes would interact in such a setup:

 task body Compute_Node is

 begin
 loop
 select
 accept Responsive;
 or
 accept Compute (Job : Jobs; Diverge_Column : out Natural_Array) do
 declare
 Divergent : constant Real := 2.0;
 begin
 Busy_Nodes.Inc;
 for y in Diverge_Column’Range loop
 declare
 C : constant Complex :=
 Job.Origin + (Re => 0.0, Im => Real (y) * Job.Resolution);
 Z : Complex := C;
 begin
 Diverge_Column (y) := Divergence_Limit;
 Iterate : for Iteration in 0 .. Divergence_Limit loop
 if abs (Z) > Divergent then
 Diverge_Column (y) := Iteration;
 exit Iterate;
 end if;
 Z := C + Z ** 2;
 end loop Iterate;
 end;
 end loop;
 Busy_Nodes.Dec;
 end;
 end Compute;
 or
 terminate;
 end select;
 end loop;
 exception
 when E : others => Put_Line (Exception_Information (E));
 end Compute_Node;

Such a compute node will determine the divergence-stage of a specific point in the Mandelbrot
set by iterating the function Z C Z2= + (with C and Z being initialized the x and y coordination
in question in their real and imaginary parts respectively). The mathematics behind are irrel-
evant for this example – the fact that divergence is hard to predict with respect to the original
x and y coordinates is not. It means that some compute nodes will complete their job and
become available again much earlier than others. This makes a classical “lock-step” parallel
strategy of concurrent programming less efficient and we have a chance to rather apply a flex-
ible strategy which considers the actual computational load at all times.

The compute node will alter between two states: being blocked in its select statement (and
this being responsive on the Responsive entry) or being busy in the Compute entry (and thus
being unresponsive on the Responsive entry).

4 | ANU College of Engineering and Computer Science	 September 2020

The server as well as the compute nodes made references to Busy_Nodes, hence let’s have a
look what’s happening over there:

 protected body Busy_Nodes is

 entry Hold (Job : Jobs; Diverge_Column : out Natural_Array)
 when No_of_Busy_Nodes < Utilized_Cores is

 begin
 requeue Server.Compute;
 end Hold;

 procedure Inc is

 begin
 No_Of_Busy_Nodes := CPU_Range’Succ (No_Of_Busy_Nodes);
 end Inc;

 procedure Dec is

 begin
 No_Of_Busy_Nodes := CPU_Range’Pred (No_Of_Busy_Nodes);
 end Dec;

 end Busy_Nodes;

Turns out this a simple protected object which will hold calls which could not go through the
server directly to the compute nodes in the first attempt. Calls will be held there until the num-
ber of busy compute nodes is less than the total number of cores. It will then requeue the call
back to the server and the server will process it as if it would have arrived for the first time.

I assume that you begin to see why I warned you about circular dependencies in this example.

If you analyse the sequence of operations carefully you will also find that there is no starvation
of tasks, as if a task has been redirected to the Hold point, because the server missed a com-
pute node becoming responsive before the end of the probing loop inside the server, then this
call will immediately come back to the server.

So far, this whole infrastructure is independent of a concrete Mandelbrot Set and in fact we can
use this server to render many Mandelbrot Set displays at the same time. In order to make use
of the setup for a specific section of the Mandelbrot Set we need Agents which will manage
the processing of individual columns inside such a set. This could for instance look like that:

 task body Agent is

 begin
 loop
 select
 accept Process (x : Pix_Range_x) do
 Server.Compute
 (Job => (Origin => (Re => Min_x * Resolution * Real (x),
 Im => Min_y * Resolution),
 Resolution => Resolution),
 Diverge_Column => Mandelbrot_Set (x));
 end Process;
 or
 terminate;
 end select;
 end loop;
 exception
 when E : others => Put_Line (Exception_Information (E));
 end Agent;

Instances of those Agent tasks will then take those calls to the server and ultimately to the
compute nodes.

5 | ANU College of Engineering and Computer Science	 September 2020

A procedure to instantiate the whole operation could then be:

procedure Dynamic_Servers is

 Agents : array (Core_Range) of Agent;
 Agent_Index : Core_Range := Core_Range’First;

begin
 for x in Pix_Range_x loop
 Agents (Agent_Index).Process (x);
 Agent_Index := Succ_Mod (Agent_Index);
 end loop;

exception
 when E : others => Put_Line (Exception_Information (E));
end Dynamic_Servers;

Every column of this Mandelbrot Set display is handed over to a set of Agent tasks and every-
thing runs at maximal performance.

… or does it? … see the next section …

Exercise 1:  Analyse, Optimise and Enjoy

I cheated and attempted to talk you into believing that the above structure will result in maxi-
mal concurrency on your specific machine. Download the provided project from the course site,
run it and see for yourself that your computer will be rather under-utilized. If you have trouble
to see the actual CPU load then go to the Spec package and crank up the Divergence_Limit
from 1_000 to say 10_000. You should now see some significant sweating of your computer, yet
not on all cores. Analyse what is going on, repair (or even optimise) the structure and resubmit
it under the same archive name to the SubmissionApp under “Lab 8 Balancing Server“ for a
detailed code review by your peers and by us.

Make Sure You Logout
to Terminate Your Session!

Outlook
You are now very well prepared to take on your first major assignment – make the best of it and
enjoy the swarming.

http://cs.anu.edu.au/SubmissionApp

